Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(8): 089902, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38457741

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.131.258401.

2.
Eur Phys J E Soft Matter ; 47(2): 16, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376695

RESUMO

Liquid-liquid phase separation (LLPS) in binary or multi-component solutions is a well-studied subject in soft matter with extensive applications in biological systems. In recent years, several experimental studies focused on LLPS of solutes in hydrated gels, where the formation of coexisting domains induces elastic deformations within the gel. While the experimental studies report unique physical characteristics of these systems, such as sensitivity to mechanical forces and stabilization of multiple, periodic phase-separated domains, the theoretical understanding of such systems and the role of long-range interactions have not emphasized the nonlinear nature of the equilibrium binodal for strong segregation of the solute. In this paper, we formulate a generic, mean-field theory of a hydrated gel in the presence of an additional solute which changes the elastic properties of the gel. We derive equations for the equilibrium binodal of the phase separation of the solvent and solute and show that the deformations induced by the solute can result in effective long-range interactions between phase-separating solutes that can either enhance or, in the case of externally applied pressure, suppress phase separation of the solute relative to the case where there is no gel. This causes the coexisting concentrations at the binodal to depend on the system-wide average concentration, in contrast to the situation for phase separation in the absence of the gel.

3.
Soft Matter ; 19(41): 7907-7911, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37823228

RESUMO

We present a scaling view of underscreening observed in salt solutions in the range of concentrations greater than about 1 M, in which the screening length increases with concentration. The system consists of hydrated clusters of positive and negative ions with a single unpaired ion as suggested by recent simulations. The environment of this ion is more hydrated than average which leads to a self-similar situation in which the size of this environment scales with the screening length. The prefactor involves the local dielectric constant and the cluster density. The scaling arguments as well as the cluster model lead to scaling of the screening length with the ion concentration, in agreement with observations.

4.
Biophys J ; 122(3): 506-512, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609139

RESUMO

The volume of adhered cells has been shown experimentally to decrease during spreading. This effect can be understood from the pump-leak model, which we have extended to include mechano-sensitive ion transporters. We identify a novel effect that has important consequences on cellular volume loss: cells that are swollen due to a modulation of ion transport rates are more susceptible to volume loss in response to a tension increase. This effect explains in a plausible manner the discrepancies between three recent, independent experiments on adhered cells, between which both the magnitude of the volume change and its dynamics varied substantially. We suggest that starved and synchronized cells in two of the experiments were in a swollen state and, consequently, exhibited a large volume loss at steady state. Nonswollen cells, for which there is a very small steady-state volume decrease, are still predicted to transiently lose volume during spreading due to a relaxing viscoelastic tension that is large compared with the steady-state tension. We elucidate the roles of cell swelling and surface tension in cellular volume regulation and discuss their possible microscopic origins.


Assuntos
Tensão Superficial , Transporte de Íons , Tamanho Celular
5.
Phys Rev Lett ; 131(25): 258401, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181373

RESUMO

The combination of phase separation and long-ranged, effective, Coulomb interactions results in microphase separation. We predict the sizes and shapes of such microdomains and uniquely their dependence on the macroscopic sample shape which also affects the effective interfacial tension of fluctuations of the lamellar phase. These are applied to equilibrium salt solutions and block copolymers. Nonequilibrium phase separation in the presence of chemical reactions (e.g., cellular condensates) is mapped to the Coulomb theory to which our predictions apply. In some cases, the effective interfacial tension can be ultralow.

6.
Phys Rev Lett ; 129(12): 128102, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36179193

RESUMO

Biomolecular self-assembly spatially segregates proteins with a limited number of binding sites (valence) into condensates that coexist with a dilute phase. We develop a many-body lattice model for a three-component system of proteins with fixed valence in a solvent. We compare the predictions of the model to experimental phase diagrams that we measure in vivo, which allows us to vary specifically a binding site's affinity and valency. We find that the extent of phase separation varies exponentially with affinity and increases with valency. Valency alone determines the symmetry of the phase diagram.


Assuntos
Proteínas , Sítios de Ligação , Proteínas/química , Solventes
7.
Proc Natl Acad Sci U S A ; 119(21): e2118301119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35580183

RESUMO

The volume of the cell nucleus varies across cell types and species and is commonly thought to be determined by the size of the genome and degree of chromatin compaction. However, this notion has been challenged over the years by much experimental evidence. Here, we consider the physical condition of mechanical force balance as a determining condition of the nuclear volume and use quantitative, order-of-magnitude analysis to estimate the forces from different sources of nuclear and cytoplasmic pressure. Our estimates suggest that the dominant pressure within the nucleus and cytoplasm of nonstriated muscle cells originates from the osmotic pressure of proteins and RNA molecules that are localized to the nucleus or cytoplasm by out-of-equilibrium, active nucleocytoplasmic transport rather than from chromatin or its associated ions. This motivates us to formulate a physical model for the ratio of the cell and nuclear volumes in which osmotic pressures of localized proteins determine the relative volumes. In accordance with unexplained observations that are a century old, our model predicts that the ratio of the cell and nuclear volumes is a constant, robust to a wide variety of biochemical and biophysical manipulations, and is changed only if gene expression or nucleocytoplasmic transport is modulated.


Assuntos
Núcleo Celular , Transporte Proteico , Citoplasma/metabolismo , Citosol , Modelos Biológicos , Pressão Osmótica
8.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34135122

RESUMO

Maintaining homeostasis is a fundamental characteristic of living systems. In cells, this is contributed to by the assembly of biochemically distinct organelles, many of which are not membrane bound but form by the physical process of liquid-liquid phase separation (LLPS). By analogy with LLPS in binary solutions, cellular LLPS was hypothesized to contribute to homeostasis by facilitating "concentration buffering," which renders the local protein concentration within the organelle robust to global variations in the average cellular concentration (e.g., due to expression noise). Interestingly, concentration buffering was experimentally measured in vivo in a simple organelle with a single solute, while it was observed not to be obeyed in one with several solutes. Here, we formulate theoretically and solve analytically a physical model of LLPS in a ternary solution of two solutes (ϕ and ψ) that interact both homotypically (ϕ-ϕ attractions) and heterotypically (ϕ-ψ attractions). Our physical theory predicts how the coexisting concentrations in LLPS are related to expression noise and thus, generalizes the concept of concentration buffering to multicomponent systems. This allows us to reconcile the seemingly contradictory experimental observations. Furthermore, we predict that incremental changes of the homotypic and heterotypic interactions among the molecules that undergo LLPS, such as those that are caused by mutations in the genes encoding the proteins, may increase the efficiency of concentration buffering of a given system. Thus, we hypothesize that evolution may optimize concentration buffering as an efficient mechanism to maintain LLPS homeostasis and suggest experimental approaches to test this in different systems.


Assuntos
Modelos Biológicos , Transição de Fase , Soluções
9.
Nat Chem Biol ; 16(9): 939-945, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661377

RESUMO

Protein self-organization is a hallmark of biological systems. Although the physicochemical principles governing protein-protein interactions have long been known, the principles by which such nanoscale interactions generate diverse phenotypes of mesoscale assemblies, including phase-separated compartments, remain challenging to characterize. To illuminate such principles, we create a system of two proteins designed to interact and form mesh-like assemblies. We devise a new strategy to map high-resolution phase diagrams in living cells, which provide self-assembly signatures of this system. The structural modularity of the two protein components allows straightforward modification of their molecular properties, enabling us to characterize how interaction affinity impacts the phase diagram and material state of the assemblies in vivo. The phase diagrams and their dependence on interaction affinity were captured by theory and simulations, including out-of-equilibrium effects seen in growing cells. Finally, we find that cotranslational protein binding suffices to recruit a messenger RNA to the designed micron-scale structures.


Assuntos
Proteínas Luminescentes/química , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Sobrevivência Celular , Difusão , Escherichia coli/genética , Recuperação de Fluorescência Após Fotodegradação , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Transição de Fase , Mutação Puntual , Domínios Proteicos , Multimerização Proteica , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Viscosidade , Proteína Vermelha Fluorescente
10.
Soft Matter ; 16(23): 5458-5469, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32484171

RESUMO

Multivalent molecules can bind a limited number of multiple neighbors via specific interactions. In this paper, we investigate theoretically the self-assembly and phase separation of such molecules in dilute solution. We show that the equilibrium size (n) distributions of linear or branched assemblies qualitatively differ; the former decays exponentially with the relative size n/N[combining macron] (N[combining macron] = n), while the latter decays as a power law, with an exponential cutoff only for n ⪆ N[combining macron]2 ≫ N[combining macron]. In some cases, finite, branched assemblies are unstable and show a sol-gel transition at a critical concentration. In dilute solutions, non-specific interactions result in phase separation, whose critical point is described by an effective Flory Huggins theory that is sensitive to the nature of these distributions.

11.
Front Physiol ; 11: 164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32184736

RESUMO

We review a theoretical, coarse-grained description for cardiomyocytes calcium dynamics that is motivated by experiments on RyR channel dynamics and provides an analogy to other spontaneously oscillating systems. We show how a minimal model, that focuses on calcium channel and pump dynamics and kinetics, results in a single, easily understood equation for spontaneous calcium oscillations (the Van-der-Pol equation). We analyze experiments on isolated RyR channels to quantify how the channel dynamics depends both on the local calcium concentration, as well as its temporal behavior ("adaptation"). Our oscillator model analytically predicts the conditions for spontaneous oscillations, their frequency and amplitude, and how each of those scale with the small number of relevant parameters related to calcium channel and pump activity. The minimal model is easily extended to include the effects of noise and external pacing (electrical or mechanical). We show how our simple oscillator predicts and explains the experimental observations of synchronization, "bursting" and reduction of apparent noise in the beating dynamics of paced cells. Thus, our analogy and theoretical approach provides robust predictions for the beating dynamics, and their biochemical and mechanical modulation.

12.
Proc Natl Acad Sci U S A ; 117(11): 5604-5609, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32132211

RESUMO

Recent experiments reveal that the volume of adhered cells is reduced as their basal area is increased. During spreading, the cell volume decreases by several thousand cubic micrometers, corresponding to large pressure changes of the order of megapascals. We show theoretically that the volume regulation of adhered cells is determined by two concurrent conditions: mechanical equilibrium with the extracellular environment and a generalization of Donnan (electrostatic) equilibrium that accounts for active ion transport. Spreading affects the structure and hence activity of ion channels and pumps, and indirectly changes the ionic content in the cell. We predict that more ions are released from the cell with increasing basal area, resulting in the observed volume-area dependence. Our theory is based on a minimal model and describes the experimental findings in terms of measurable, mesoscale quantities. We demonstrate that two independent experiments on adhered cells of different types fall on the same master volume-area curve. Our theory also captures the measured osmotic pressure of adhered cells, which is shown to depend on the number of proteins confined to the cell, their charge, and their volume, as well as the ionic content. This result can be used to predict the osmotic pressure of cells in suspension.


Assuntos
Adesão Celular , Tamanho Celular , Modelos Teóricos , Osmorregulação/fisiologia , Animais , Humanos , Transporte de Íons , Pressão Osmótica
13.
Phys Rev Lett ; 125(25): 258101, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416366

RESUMO

Spontaneous contractions of cardiomyocytes are driven by calcium oscillations due to the activity of ionic calcium channels and pumps. The beating phase is related to the time-dependent deviation of the oscillations from their average frequency, due to noise and the resulting cellular response. Here, we demonstrate experimentally that, in addition to the short-time (1-2 Hz), beat-to-beat variability, there are long-time correlations (tens of minutes) in the beating phase dynamics of isolated cardiomyocytes. Our theoretical model relates these long-time correlations to cellular regulation that restores the frequency to its average, homeostatic value in response to stochastic perturbations.


Assuntos
Modelos Cardiovasculares , Miócitos Cardíacos/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Células Cultivadas , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Ratos , Processos Estocásticos
14.
Phys Rev E ; 100(4-1): 042615, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31771021

RESUMO

The classical Debye-Hückel (DH) theory clearly accounts for the origin of screening in electrolyte solutions and works rather well for dilute electrolyte solutions. While the Debye screening length decreases with the ion concentration and is independent of ion size, recent surface-force measurements imply that for concentrated solutions, the screening length exhibits an opposite trend; it increases with ion concentration and depends on the ionic size. The screening length is usually defined by the response of the electrolyte solution to a test charge but can equivalently be derived from the charge-charge correlation function. By going beyond DH theory, we predict the effects of ion size on the charge-charge correlation function. A simple modification of the Coulomb interaction kernel to account for the excluded volume of neighboring ions yields a nonmonotonic dependence of the screening length (correlation length) on the ionic concentration, as well as damped charge oscillations for high concentrations.

15.
Biophys J ; 117(5): 856-866, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31427069

RESUMO

Actin filaments associated with myosin motors constitute the cytoskeletal force-generating machinery for many types of adherent cells. These actomyosin units are structurally ordered in muscle cells and, in particular, may be spatially registered across neighboring actin bundles. Such registry or stacking of myosin filaments have been recently observed in ordered actin bundles of even fibroblasts with super-resolution microscopy techniques. We introduce here a model for the dynamics of stacking arising from long-range mechanical interactions between actomyosin units through mutual contractile deformations of the intervening cytoskeletal network. The dynamics of registry involve two key processes: 1) polymerization and depolymerization of actin filaments and 2) remodeling of cross-linker-rich actin adhesion zones, both of which are, in principle, mechanosensitive. By calculating the elastic forces that drive registry and their effect on actin polymerization rates, we estimate a characteristic timescale of tens of minutes for registry to be established, in agreement with experimentally observed timescales for individual kinetic processes involved in myosin stack formation, which we track and quantify. This model elucidates the role of actin turnover dynamics in myosin stacking and explains the loss of stacks seen when actin assembly or disassembly and cross-linking is experimentally disrupted in fibroblasts.


Assuntos
Actinas/metabolismo , Miosinas/metabolismo , Animais , Fenômenos Biomecânicos , Elasticidade , Cinética , Polimerização , Ratos , Fibras de Estresse/metabolismo
16.
Phys Rev Lett ; 122(19): 198101, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31144920

RESUMO

Mechanical contraction in muscle cells requires Ca to allow myosin binding to actin. Beating cardiomyocytes contain internal Ca stores whose cytoplasmic concentration oscillates. Our theory explains observed single channel dynamics as well as cellular oscillations in spontaneously beating cardiomyocytes. The Ca dependence of channel activity responsible for Ca release includes positive feedback with a delayed response. We use this to predict a dynamical equation for global calcium oscillations with only a few physically relevant parameters. The theory accounts for the observed entrainment of beating to an oscillatory electric or mechanical field.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Contração Miocárdica
17.
Adv Mater ; 30(41): e1707028, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30256463

RESUMO

An introduction to the physical properties of living active matter at the mesoscopic scale (tens of nanometers to micrometers) and their unique features compared with "dead," nonactive matter is presented. This field of research is increasingly denoted as "biological physics" where physics includes chemical physics, soft matter physics, hydrodynamics, mechanics, and the related engineering sciences. The focus is on the emergent properties of these systems and their collective behavior, which results in active self-organization and how they relate to cellular-level biological function. These include locomotion (cell motility and migration) forces that give rise to cell division, the growth and form of cellular assemblies in development, the beating of heart cells, and the effects of mechanical perturbations such as shear flow (in the bloodstream) or adhesion to other cells or tissues. An introduction to the fundamental concepts and theory with selected experimental examples related to the authors' own research is presented, including red-blood-cell membrane fluctuations, motion of the nucleus within an egg cell, self-contracting acto-myosin gels, and structure and beating of heart cells (cardiomyocytes), including how they can be driven by an oscillating, mechanical probe.


Assuntos
Fenômenos Biomecânicos , Animais , Fenômenos Fisiológicos Celulares , Humanos , Modelos Moleculares
18.
Artigo em Inglês | MEDLINE | ID: mdl-29632266

RESUMO

Myosin II filaments form ordered superstructures in both cross-striated muscle and non-muscle cells. In cross-striated muscle, myosin II (thick) filaments, actin (thin) filaments and elastic titin filaments comprise the stereotypical contractile units of muscles called sarcomeres. Linear chains of sarcomeres, called myofibrils, are aligned laterally in registry to form cross-striated muscle cells. The experimentally observed dependence of the registered organization of myofibrils on extracellular matrix elasticity has been proposed to arise from the interactions of sarcomeric contractile elements (considered as force dipoles) through the matrix. Non-muscle cells form small bipolar filaments built of less than 30 myosin II molecules. These filaments are associated in registry forming superstructures ('stacks') orthogonal to actin filament bundles. Formation of myosin II filament stacks requires the myosin II ATPase activity and function of the actin filament crosslinking, polymerizing and depolymerizing proteins. We propose that the myosin II filaments embedded into elastic, intervening actin network (IVN) function as force dipoles that interact attractively through the IVN. This is in analogy with the theoretical picture developed for myofibrils where the elastic medium is now the actin cytoskeleton itself. Myosin stack formation in non-muscle cells provides a novel mechanism for the self-organization of the actin cytoskeleton at the level of the entire cell.This article is part of the theme issue 'Self-organization in cell biology'.


Assuntos
Citoesqueleto de Actina/química , Músculo Estriado/metabolismo , Miosina Tipo II/química , Miofibrilas/química , Sarcômeros/química
19.
Sci Rep ; 8(1): 2237, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396531

RESUMO

We theoretically predict and compare with experiments, transitions from spontaneous beating to dynamical entrainment of cardiomyocytes induced by an oscillating, external mechanical probe. In accord with recent experiments, we predict the dynamical behavior as a function of the probe amplitude and frequency. The theory is based on a phenomenological model for a non-linear oscillator, motivated by acto-myosin contractility. The generic behavior is independent of the detailed, molecular origins of the dynamics and, consistent with experiment, we find three regimes: spontaneous beating with the natural frequency of the cell, entrained beating with the frequency of the probe, and a "bursting" regime where the two frequencies alternate in time. We quantitatively predict the properties of the "bursting" regime as a function of the amplitude and frequency of the probe. Furthermore, we examine the pacing process in the presence of weak noise and explain how this might relate to cardiomyocyte physiology.


Assuntos
Fenômenos Mecânicos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Actomiosina/fisiologia , Cálcio/análise , Sinalização do Cálcio/fisiologia , Humanos
20.
Phys Rev E ; 95(5-1): 052415, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28618523

RESUMO

We theoretically predict the nonlinear elastic responses of polydisperse biopolymer gels to uniaxial compression. We analyze the competition between compressive stiffening due to polymer densification by out-going solvent flow and compressive softening due to continuous polymer buckling. We point out that the polydispersity in polymer lengths can result in an intrinsic, equilibrium mode of nonaffine compression: nonuniform strain but with uniform force distribution, which is found to be more energetically preferable than affine deformation. In this case, the gel softens significantly after the onset of polymer buckling at small compression, but as compression increases, densification-induced stiffening becomes important and a modulus plateau should be observed for a large range of strain. We also relate our results to recent compression experiments on collagen gels and fibrin gels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...